上颌窦炎症是什么病| mds是什么| 五四运动是什么| 水瓶座是什么性格| 什么是意淫| 大枣枸杞泡水喝有什么好处| 三个王念什么| 旺是什么意思| uv是什么| 什么菜降血压效果最好| 金银花洗澡对婴儿有什么好处| 7月20号什么星座| 秋老虎是什么意思| 数字2代表什么意思| 白居易是诗什么| 邋遢什么意思| 什么树没有叶子| 眼角流泪是什么原因| 咳嗽喝什么汤好| 眼睛不舒服是什么原因| 脚有酸臭味是什么原因| 什么时间量血压最准| 不过如此是什么意思| 主动脉硬化是什么意思| 眼痒痒是什么原因引起| uv是什么意思| 吃莲子有什么好处| 孩子打嗝是什么原因| 桑葚不能和什么一起吃| 身上长小肉揪是什么原因| 月经来一点又不来了是什么原因| 北京中秋节有什么活动| 2023年属什么生肖| 狗牯脑茶属于什么茶| 射频是什么| 昆山有什么好玩的地方| 一个月来两次月经是什么原因| 百脚虫的出现意味什么| 猴子偷桃是什么意思| bpd是什么| 尿道感染吃什么药最好| 市委副秘书长什么级别| 维生素d和维生素ad有什么区别| 什么叫代孕| 血常规检查挂什么科| 姑妈的老公叫什么| 宫颈纳囊用什么药治疗效果好| 幽会是什么意思| me too是什么意思| 打耳洞医院挂什么科| 司空见惯是什么意思| 拉肚子拉出血是什么原因| 眼睛酸疼是什么原因| 白带多用什么药效果好| 胰岛素是什么| 西瓜像什么比喻句| 梦见补的牙齿掉了是什么意思| 世界上最大的鱼是什么鱼| 涉水是什么意思| 什么窃什么盗| 11月30是什么星座| 做梦掉牙齿是什么意思| 为什么冰箱冷藏室会结冰| 为什么发烧会觉得冷| 什么样的花| 建字五行属什么| mds是什么病的简称| cu什么意思| 阴道炎吃什么药| 1111是什么意思| 生肖蛇和什么生肖相冲| 后背不舒服是什么原因| 潸然泪下是什么意思| 碘伏和碘酒有什么区别| 湿疹擦什么药| 真菌性龟头炎用什么药| 吃什么药可以流产| 摄人心魄是什么意思| 左眉毛上有痣代表什么| 什么叫化学| 蛋蛋疼是什么原因| 糖吃多了有什么危害| 羊水什么颜色| 马克华菲是什么档次| 劳苦功高是什么意思| 为什么越睡越困越疲惫| 扁桃体有什么作用| 6月16日什么星座| 微商是什么| 肾透析是什么意思| 只吐不拉是什么原因| 早餐吃什么最营养| 常吃南瓜子有什么好处和坏处| 山梨酸是什么| 牙齿上有黄斑是什么原因| 敷设是什么意思| 8.14是什么星座| 尿管痒是什么原因| 脚趾麻是什么病的前兆| 治疗早泄吃什么药| 来月经能吃什么水果| 医院总务科是干什么的| 小麦粉可以做什么| 马步鱼是什么鱼| 8五行属什么| 紫色搭配什么颜色| 炉鼎是什么意思| 来大姨妈前有什么症状| 眼睑痉挛挂什么科| 268是什么意思| 打call是什么意思| 气管炎咳嗽吃什么药最有效| 睡着后抽搐抖动是什么| 变节是什么意思| 瘟疫是什么病| 蛋白石是什么石头| 治疗胃反酸烧心用什么药最好| 牡丹花有什么颜色| 松树的叶子像什么| 硫酸亚铁适合浇什么花| 升读什么字| 千里莺啼什么映什么| 羊水破了是什么感觉| 无犯罪记录证明需要什么材料| 麸子是什么东西| 孩子脾胃虚弱吃什么药| 喝菊花茶有什么好处| 什么叫统招生| espresso什么意思| 1月23号什么星座| 漫不经心是什么意思| 甘油三酯指的是什么| 肌张力高是什么意思| 一览无余是什么意思| 害羞的近义词是什么| 孕妇吃核桃对胎儿有什么好处| 土命和什么命最配| 什么是热伤风| 永加日念什么| 什么是心梗| 婴幼儿湿疹用什么药膏最有效| 宁夏古代叫什么| 梦见钱是什么预兆| 子宫复旧是什么意思| 血去掉一撇念什么| 出片是什么意思| 断片是什么意思| 姑姑的儿子叫什么| 为什么叫汉族| 杨桃有什么营养价值| 人最重要的是什么| 特点是什么意思| 摸头杀是什么意思| decaf是什么意思| 李姓男孩起什么名字好| 阳历7月7日是什么日子| 抗核抗体阳性是什么意思| 为什么犹太人聪明| 六味地黄丸什么人不能吃| 天蝎座是什么星象| 什么是疣图片| 头晕视力模糊是什么原因| 乘务长是干什么的| 24k金是什么意思| UFS是什么意思| 石膏是什么| 为什么生气会胃疼| 南辕北辙告诉我们什么道理| kiv是什么车| 额头长痘是因为什么| 梦见不干净的东西代表什么| 什么远什么长| 什么是信仰| 隔的右边念什么| 最难写的字是什么| 事半功倍是什么意思| 飒爽什么意思| 门特是什么| 荡秋千有什么好处| 贫血到什么程度会晕倒| 不饱和脂肪酸是什么意思| 久违什么意思| 上火流鼻血是什么原因| 做完手术吃什么水果好| 七什么八什么| 股票填权是什么意思| 万丈深渊是什么意思| 为什么空调不制冷| 肉桂是什么味道| 处女座后面是什么星座| 男人吃什么对性功能好| 五条杠什么牌子| 档案自由可投什么意思| 贫血吃什么药效果好| 吃什么下火效果最好| 一切唯心造是什么意思| 袁隆平是什么家| 筛窦炎是什么病| 桂花树施什么肥| 术后改变是什么意思| ecology是什么意思| 孕妇喝什么汤| 程门立雪是什么生肖| rover是什么意思| 汗管瘤用什么药能去掉| 子孙满堂是什么生肖| 尿毒症有些什么症状| 扶他是什么意思| 回声不均匀是什么意思| 心识是什么意思| 大姨妈每个月提前来是什么原因| 尿酸高有什么症状表现| 花什么叶什么| 玉兰片和竹笋有什么区别| 生理年龄是什么意思| 烧心吃什么药| 非甾体抗炎药是什么意思| 什么是骨质增生| 玉仁玫白膏有什么功效| 什么是牙槽骨突出图片| 造影检查对身体有什么伤害| 什么是能量| 六月初一什么日子| 什么空如洗| 直肠癌是什么原因引起的| 尿道炎吃什么药好| 为什么穿堂风最伤人| 什么是gay| 绿草如茵是什么生肖| 搪塞是什么意思| 反流性食管炎是什么病| hg是什么单位| 扑救带电火灾应选用什么灭火器| 出汗吃什么药| 梦见找鞋子是什么意思| 经血逆流的症状是什么| 一人一口是什么字| 破涕为笑什么意思| 扑热息痛又叫什么名| 什么入什么出| 月经老提前是什么原因| 老头乐是什么| 飞机杯长什么样子| gpi是什么意思| 通草长什么样图片| 有机可乘是什么意思| 大乌龙是什么意思| 尿里带血是什么原因女性| 肠系膜脂膜炎是什么病| 36岁属什么| 无花果什么时候结果| 幼儿贫血吃什么补血最快| 石骨症是什么病| 梅菜是什么菜| 成吉思汗姓什么| 高血压药什么时候吃最好| 咳嗽喝什么茶| 什么星| 煮毛豆放什么调料| 红斑狼疮是什么原因引起的| 尿尿疼是什么原因| 高血压是什么病| 为人是什么意思| 马超属什么生肖| 百度Jump to content

龙眼是什么季节的水果

From Wikipedia, the free encyclopedia
(Redirected from Formalism (mathematics))
百度   强化制度执行力建设,治理官场“大忽悠”  第一,加强制度建设,尤其是加强责任体系建设、工作运行机制建设和考核评价机制建设,形成严密、科学、可操作的制度规范体系,这是提高制度执行力的前提和基础。

In the philosophy of mathematics, formalism is the view that holds that statements of mathematics and logic can be considered to be statements about the consequences of the manipulation of strings (alphanumeric sequences of symbols, usually as equations) using established manipulation rules. A central idea of formalism "is that mathematics is not a body of propositions representing an abstract sector of reality, but is much more akin to a game, bringing with it no more commitment to an ontology of objects or properties than ludo or chess."[1]

According to formalism, mathematical statements are not "about" numbers, sets, triangles, or any other mathematical objects in the way that physical statements are about material objects. Instead, they are purely syntactic expressions—formal strings of symbols manipulated according to explicit rules without inherent meaning. These symbolic expressions only acquire interpretation (or semantics) when we choose to assign it, similar to how chess pieces follow movement rules without representing real-world entities. This view stands in stark contrast to mathematical realism, which holds that mathematical objects genuinely exist in some abstract realm.

Formalism emerged as a response to foundational crises in mathematics during the late nineteenth and early twentieth centuries, particularly concerns about paradoxes in set theory and questions about the consistency of mathematical systems. It represents one of the three major philosophical approaches to mathematics developed during this period, alongside logicism and intuitionism, though formalism encompasses a broader spectrum of positions than these more narrowly defined views. Among formalists, the German mathematician David Hilbert was the most influential advocate, developing what became known as Hilbert's program to establish the consistency of mathematics through purely formal methods.[2]

Early formalism

[edit]

The early mathematical formalists attempted "to block, avoid, or sidestep (in some way) any ontological commitment to a problematic realm of abstract objects."[3] German mathematicians Eduard Heine and Carl Johannes Thomae are considered early advocates of mathematical formalism.[3] Heine and Thomae's formalism can be found in Gottlob Frege's criticisms in The Foundations of Arithmetic.

According to Alan Weir, the formalism of Heine and Thomae that Frege attacks can be "describe[d] as term formalism or game formalism."[3] Term formalism is the view that mathematical expressions refer to symbols, not numbers. Heine expressed this view as follows: "When it comes to definition, I take a purely formal position, in that I call certain tangible signs numbers, so that the existence of these numbers is not in question."[4]

Thomae is characterized as a game formalist who claimed that "[f]or the formalist, arithmetic is a game with signs which are called empty. That means that they have no other content (in the calculating game) than they are assigned by their behaviour with respect to certain rules of combination (rules of the game)."[5]

Frege provides three criticisms of Heine and Thomae's formalism: "that [formalism] cannot account for the application of mathematics; that it confuses formal theory with metatheory; [and] that it can give no coherent explanation of the concept of an infinite sequence."[6] Frege's criticism of Heine's formalism is that his formalism cannot account for infinite sequences. Dummett argues that more developed accounts of formalism than Heine's account could avoid Frege's objections by claiming they are concerned with abstract symbols rather than concrete objects.[7] Frege objects to the comparison of formalism with that of a game, such as chess.[8] Frege argues that Thomae's formalism fails to distinguish between game and theory.

Hilbert's formalism

[edit]
David Hilbert

A major figure of formalism was David Hilbert, whose program was intended to be a complete and consistent axiomatization of all of mathematics.[9] Hilbert aimed to show the consistency of mathematical systems from the assumption that the "finitary arithmetic" (a subsystem of the usual arithmetic of the positive integers, chosen to be philosophically uncontroversial) was consistent (i.e. no contradictions can be derived from the system).

The way that Hilbert tried to show that an axiomatic system was consistent was by formalizing it using a particular language.[10] In order to formalize an axiomatic system, a language must first be chosen in which operations can be expressed and performed within that system. This language must include five components:

  • It must include variables such as x, which can stand for some number.
  • It must have quantifiers such as the symbol for the existence of an object.
  • It must include equality.
  • It must include connectives such as ? for "if and only if."
  • It must include certain undefined terms called parameters. For geometry, these undefined terms might be something like a point or a line, which we still choose symbols for.

By adopting this language, Hilbert thought that all theorems could be proven within any axiomatic system using nothing more than the axioms themselves and the chosen formal language.

G?del's conclusion in his incompleteness theorems was that one cannot prove consistency within any consistent axiomatic system rich enough to include classical arithmetic. On the one hand, only the formal language chosen to formalize this axiomatic system must be used; on the other hand, it is impossible to prove the consistency of this language in itself.[10] Hilbert was originally frustrated by G?del's work because it shattered his life's goal to completely formalize everything in number theory.[11] However, G?del did not feel that he contradicted everything about Hilbert's formalist point of view.[12] After G?del published his work, it became apparent that proof theory still had some use, the only difference is that it could not be used to prove the consistency of all of number theory as Hilbert had hoped.[11]

Hilbert was initially a deductivist,[citation needed] but he considered certain metamathematical methods to yield intrinsically meaningful results and was a realist with respect to the finitary arithmetic. Later, he held the opinion that there was no other meaningful mathematics whatsoever, regardless of interpretation.

Further developments

[edit]

Other formalists, such as Rudolf Carnap, considered mathematics to be the investigation of formal axiom systems.[13]

Haskell Curry defines mathematics as "the science of formal systems."[14] Curry's formalism is unlike that of term formalists, game formalists, or Hilbert's formalism. For Curry, mathematical formalism is about the formal structure of mathematics and not about a formal system.[14] Stewart Shapiro describes Curry's formalism as starting from the "historical thesis that as a branch of mathematics develops, it becomes more and more rigorous in its methodology, the end-result being the codification of the branch in formal deductive systems."[15]

Criticism

[edit]

Kurt G?del indicated one of the weak points of formalism by addressing the question of consistency in axiomatic systems.

Bertrand Russell has argued that formalism fails to explain what is meant by the linguistic application of numbers in statements such as "there are three men in the room".[16]

See also

[edit]

References

[edit]
  1. ^ Weir, Alan (2015), "Formalism in the Philosophy of Mathematics", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Spring 2015 ed.), Metaphysics Research Lab, Stanford University, retrieved 2025-08-06
  2. ^ Simons, Peter (2009). "Formalism". Philosophy of Mathematics. Elsevier. p. 292. ISBN 9780080930589.
  3. ^ a b c Weir, Alan (2015), "Formalism in the Philosophy of Mathematics", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Spring 2015 ed.), Metaphysics Research Lab, Stanford University, retrieved 2025-08-06
  4. ^ Simons, Peter (2009). Philosophy of Mathematics. Elsevier. p. 293. ISBN 9780080930589.
  5. ^ Frege, Gottlob (1903). The Foundations of Arithmetic: A Logico-Mathematical Enquiry Into the Concept of Number. Chicago: Northwestern University Press. p. 183.
  6. ^ Dummett, Michael (1991). Frege: Philosophy of Mathematics. Cambridge: Harvard University Press. p. 252. ISBN 9780674319356.
  7. ^ Dummett, Michael (1991). Frege: Philosophy of Mathematics. Cambridge: Harvard University Press. p. 253. ISBN 9780674319356.
  8. ^ Frege, Gottlob; Ebert, Philip A.; Cook, Roy T. (1893). Basic Laws of Arithmetic: Derived using concept-script. Oxford: Oxford University Press (published 2013). pp. § 93. ISBN 9780199281749. {{cite book}}: ISBN / Date incompatibility (help)
  9. ^ Zach, Richard (2019), "Hilbert's Program", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Summer 2019 ed.), Metaphysics Research Lab, Stanford University, retrieved 2025-08-06
  10. ^ a b Snapper, Ernst (September 1979). "The Three Crises in Mathematics: Logicism, Intuitionism and Formalism" (PDF). Mathematics Magazine. 52 (4): 207–216. doi:10.1080/0025570X.1979.11976784.
  11. ^ a b Reid, Constance; Weyl, Hermann (1970). Hilbert. Springer-Verlag. p. 198. ISBN 9783662286159.
  12. ^ G?del, Kurt (1986). Feferman, Solomon (ed.). Kurt G?del: Collected Works: Volume I: Publications 1929-1936. Vol. 1. Oxford: Oxford University Press. p. 195. ISBN 9780195039641.
  13. ^ Carnap, Rudolf (1937). Logical Syntax of Language. Routledge. pp. 325–328. ISBN 9781317830597. {{cite book}}: ISBN / Date incompatibility (help)
  14. ^ a b Curry, Haskell B. (1951). Outlines of a Formalist Philosophy of Mathematics. Elsevier. p. 56. ISBN 9780444533685. {{cite book}}: ISBN / Date incompatibility (help)
  15. ^ Shapiro, Stewart (2005). "Formalism". The Oxford Companion to Philosophy. Honderich, Ted (2nd ed.). Oxford: Oxford University Press. ISBN 9780191532658. OCLC 62563098.
  16. ^ Bertrand Russell My Philosophical Development, 1959, ch. X.
[edit]
四肢麻木是什么病 吃什么养颜美容抗衰老 大便恶臭是什么原因 鹅蛋脸适合戴什么眼镜 十二指肠憩室是什么意思
u型枕有什么作用 外阴白斑用什么药 摩羯男喜欢什么类型的女生 呼吸快是什么原因 中年男人遗精是什么原因
咳嗽吃什么水果最好 肾衰竭有什么症状 宫颈病变有什么症状 就让我爱你把你捧在手心里是什么歌 studio什么牌子
心跳过快有什么危害 地中海贫血是什么病 欺凌是什么意思 生源是什么意思 渎神是什么意思
西替利嗪是什么药hcv8jop7ns3r.cn 行房时间短吃什么药hcv8jop8ns1r.cn 蒸馏酒是什么酒hcv8jop9ns8r.cn 脚臭用什么药hcv9jop2ns4r.cn 休是什么意思hcv8jop8ns5r.cn
男人眉骨高代表什么hcv9jop6ns1r.cn 肿瘤cr是什么意思inbungee.com 美国为什么不敢动朝鲜hcv8jop4ns7r.cn 水漫金山什么意思hcv8jop0ns5r.cn 俺是什么意思hcv9jop0ns7r.cn
盆腔炎挂什么科hcv8jop2ns3r.cn 喉咙发炎不能吃什么hcv9jop1ns9r.cn 狐狸的尾巴有什么作用hcv9jop3ns4r.cn 男生喉结不明显是为什么hcv8jop9ns3r.cn 我国计划生育什么时候开始hcv9jop5ns5r.cn
肝钙化灶什么意思hcv7jop6ns8r.cn gary什么意思hcv7jop4ns8r.cn 梦见买棺材是什么征兆hcv7jop6ns3r.cn 百香果什么时候开花结果yanzhenzixun.com 据点是什么意思hcv7jop6ns1r.cn
百度