视力5.3是什么概念| 脱发看什么科| 东盟是什么意思| 冰淇淋是什么做的| 禾加比读什么| 顺遂是什么意思| 清热去湿热颗粒有什么功效| 吃海鲜不能吃什么水果| 滑膜炎是什么| 86年属什么的生肖| 犬和狗有什么区别| 土豆吃多了有什么坏处| 肾不好有什么症状| who医学上是什么意思| 胃胀气吃什么| 老抽是什么| 稷是什么农作物| 老是说梦话是什么原因| 注是什么意思| 精神卫生科看什么病| 心肌炎做什么检查| 六月十一是什么星座| 卧推60公斤什么水平| 保家卫国是什么生肖| 不约而至是什么意思| 脚起水泡是什么原因| 北京立冬吃什么| 胎心胎芽最晚什么时候出现| 劈腿什么意思| 楼梯步数有什么讲究| 电灯是什么时候发明的| 薏米有什么功效| 牛肉和什么炒| 舟可是什么字| 人际关系是什么意思| x片和ct有什么区别| 张家界为什么叫张家界| 右眼皮跳是什么意思| 房性期前收缩是什么意思| 胆汁酸高是什么意思| 血糖可以吃什么水果| 2段和3段奶粉有什么区别| 匮乏是什么意思| 吃什么降血压效果最好| 蛇为什么怕鹅| 三亚在海南的什么位置| 柠檬酸钠是什么| 一什么水壶| 鸡蛋为什么这么便宜| 吃了避孕药不能吃什么东西| 咖色配什么颜色好看| 感冒怕冷吃什么药| 散粉是干什么用的| 高密度脂蛋白是什么| 同心同德是什么意思| 脾胃不好吃什么调理| 临床是什么意思| 障碍性贫血是什么病| 奔跑吧什么时候播出| 肌张力高有什么症状| 静脉曲张挂什么号| 打嗝不停是什么原因| 上海最高楼叫什么大厦有多少米高| 人五人六是什么意思| 乳腺b超挂什么科| 桂圆跟龙眼有什么区别| 为什么总是放屁| 什么病可以鉴定病残| 美尼尔氏综合症是什么病| 令妹是什么意思| 例假血发黑是什么原因| 性激素六项什么时候检查| 麦冬有什么功效| 什么病不能吃阿胶| 肌红蛋白偏低说明什么| 水果的英文是什么| 肝癌早期有什么症状| 蒲公英泡水喝有什么功效| 小孩老咳嗽是什么原因| 一九八四年属什么生肖| 垂涎欲滴意思是什么| 布鲁斯是什么意思| 射精什么感觉| 警察为什么叫蜀黍| 天兵神将是什么动物| 什么得直什么| 什么像什么比喻句| 西施是什么意思| 野钓用什么饵料最好| 儿童登机需要什么证件| 血容量不足是什么意思| 男生剪什么发型好看| 四点是什么时辰| 家里镜子放在什么位置比较好| 慷慨解囊是什么意思| 反流性食管炎吃什么中药| 10月27日什么星座| 手红是什么原因| 胃窦黄斑瘤是什么病| 晚饭吃什么最健康| 喉咙干咳嗽是什么原因| 天蝎女和什么星座最配| 肺部炎症用什么药最好| 什么是红斑狼疮病| 医生是什么生肖| 亲亲抱抱举高高什么意思| 母亲节送什么礼物好| 1991年属羊的是什么命| 要强的女人是什么性格| b是什么牌子| 蕙质兰心什么意思| 手心脚心发热是什么原因引起的| 压迫感是什么意思| 食管鳞状上皮增生是什么意思| 包皮真菌感染用什么药| 许莫氏结节是什么| 射精什么意思| 胆固醇高是什么原因引起的| 难怪是什么意思| 泌尿内科主要看什么病| 65什么意思| 女性外痔擦什么药膏好| 巨蟹男和什么座最配| 轻生什么意思| 天涯是什么意思| 洗牙喷砂是什么意思| o型血与a型血生的孩子是什么血型| 手脚发麻是什么病征兆| 色盲色弱是什么意思| 生鱼是什么鱼| 用什么泡脚去湿气寒气| 尿路感染要吃什么药| 苦丁茶有什么作用和功效| 珈字五行属什么| 吃氨糖有什么副作用| ACEI是什么药| 鱼缸什么材质的好| 军衔是什么意思| 痛风是什么原因引起的| 肝内多发钙化灶是什么意思| 甲亢与甲减有什么区别| 50年属什么| 贤上腺瘤是什么意思| 豆蔻是什么| 吃什么助勃药能硬| 什么然| 用什么泡脚能减肥| 甲硝唑的副作用是什么| 三姓家奴是什么意思| 梦见小猪仔什么意思| 男人梦见猫是什么意思| 吃芒果对身体有什么好处| 扁平足是什么样的| 洋姜有什么功效与作用| 男性囊肿是什么原因引起的| 痢疾是什么意思| 膺是什么意思| 小孩补铁吃什么| 4个月念什么字| 什么数码相机好| 祛痣挂什么科| 体内湿气太重吃什么药能快速除湿| 泸州老窖是什么香型| 游龙斑是什么鱼| 尿中泡沫多是什么原因| 神什么气什么| 耳心痒是什么原因| hla一b27阳性是什么意思| 雷击木有什么作用| 送什么礼物好| 生不如死什么意思| 孩子睡觉出汗多是什么原因| 外耳道耵聍什么意思| 轻微骨裂了有什么表现| 胸口容易出汗是什么原因| 手术后吃什么伤口愈合快| 榴莲有什么营养| 取笑是什么意思| 作业是什么意思| 自信过头叫什么| pla是什么意思| 下葬下雨是什么兆头| 吃什么拉什么完全不能消化怎么办| 手串19颗代表什么意思| 血糖高吃什么肉最好| 糖尿病患者主食应该吃什么| 胆囊息肉是什么原因造成的| 股票填权是什么意思| 甲泼尼龙主要治什么| 脊柱炎吃什么药| 4.8什么星座| 头晕目眩是什么病的征兆| knee是什么意思| 为什么水不会燃烧| 吃葡萄对身体有什么好处| 老公的爸爸称谓是什么| 金色葡萄球菌最怕什么| 情窦初开是什么意思| 宝宝拉黑色大便是什么原因| 超导体是什么| 丙型肝炎病毒抗体阴性什么意思| 疮疡是什么病| 大校军衔相当于什么官| 痛风能吃什么东西| 哇噻是什么意思| 马齿苋什么人不能吃| 肝胆相照是什么生肖| 赤茯苓又叫什么| 菠萝为什么要用盐水泡| 薄情是什么意思| 桑叶有什么功效| 什么地制宜| 踮脚有什么好处| 为什么生理期不能做| 宝宝消化不良吃什么| 人过留名雁过留声什么意思| 犀牛吃什么食物| 粪便隐血试验弱阳性是什么意思| 破军星是什么意思| 1972年属什么生肖| 吃什么通便效果最好最快| 症结是什么意思| 菊花像什么比喻句| 尿蛋白高是什么意思| 软坚散结是什么意思| 过敏性咳嗽吃什么药| 第一次什么感觉| 牛的本命佛是什么佛| 什么中药化结石最厉害| 流产后吃什么水果最佳| 子宫内膜异位症吃什么药| 什么是亚健康| 人为什么要喝水| 咽炎有什么症状| 咳嗽咳白痰是什么症状| 嗓子痛挂什么科| 什么像| 心肌梗塞是什么症状| 电脑pin是什么意思| 放屁多什么原因| 家财万贯是什么动物| 耳鸣有什么症状| 手上长红点是什么原因| 畏首畏尾是什么意思| 哈尔滨机场叫什么名字| rbc红细胞偏高是什么意思| 女人自尊心强说明什么| 手指发红是什么原因| 丰胸吃什么| 葫芦挂在家里什么位置好| 7月14日什么节日| 十一月十五号是什么星座| 精虫上脑是什么意思| 鸡屁股叫什么| 缘是什么生肖| 什么时间是排卵期| pph是什么材料| 4月3日什么星座| 1996是什么年| 中医的望闻问切是什么意思| 百香果的籽有什么功效| 不言而喻的喻是什么意思| 山花对什么| 什么人适合吃蛋白质粉| 百度Jump to content

东莞玉兰大剧院与保利续约 携手再续辉煌

From Wikipedia, the free encyclopedia
百度 而当银行同业拆息上升时,香港银行系统资金成本将加重,届时银行或考虑上调存贷利率,香港的最优惠利率会上升。

In deductive logic, a consistent theory is one that does not lead to a logical contradiction.[1] A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial.[2]:?7? Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true.[3] This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

In a sound formal system, every satisfiable theory is consistent, but the converse does not hold. If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete.[citation needed] The completeness of the propositional calculus was proved by Paul Bernays in 1918[citation needed][4] and Emil Post in 1921,[5] while the completeness of (first order) predicate calculus was proved by Kurt G?del in 1930,[6] and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931).[7] Stronger logics, such as second-order logic, are not complete.

A consistency proof is a mathematical proof that a particular theory is consistent.[8] The early development of mathematical proof theory was driven by the desire to provide finitary consistency proofs for all of mathematics as part of Hilbert's program. Hilbert's program was strongly impacted by the incompleteness theorems, which showed that sufficiently strong proof theories cannot prove their consistency (provided that they are consistent).

Although consistency can be proved using model theory, it is often done in a purely syntactical way, without any need to reference some model of the logic. The cut-elimination (or equivalently the normalization of the underlying calculus if there is one) implies the consistency of the calculus: since there is no cut-free proof of falsity, there is no contradiction in general.

Consistency and completeness in arithmetic and set theory

[edit]

In theories of arithmetic, such as Peano arithmetic, there is an intricate relationship between the consistency of the theory and its completeness. A theory is complete if, for every formula φ in its language, at least one of φ or ?φ is a logical consequence of the theory.

Presburger arithmetic is an axiom system for the natural numbers under addition. It is both consistent and complete.

G?del's incompleteness theorems show that any sufficiently strong recursively enumerable theory of arithmetic cannot be both complete and consistent. G?del's theorem applies to the theories of Peano arithmetic (PA) and primitive recursive arithmetic (PRA), but not to Presburger arithmetic.

Moreover, G?del's second incompleteness theorem shows that the consistency of sufficiently strong recursively enumerable theories of arithmetic can be tested in a particular way. Such a theory is consistent if and only if it does not prove a particular sentence, called the G?del sentence of the theory, which is a formalized statement of the claim that the theory is indeed consistent. Thus the consistency of a sufficiently strong, recursively enumerable, consistent theory of arithmetic can never be proven in that system itself. The same result is true for recursively enumerable theories that can describe a strong enough fragment of arithmetic—including set theories such as Zermelo–Fraenkel set theory (ZF). These set theories cannot prove their own G?del sentence—provided that they are consistent, which is generally believed.

Because consistency of ZF is not provable in ZF, the weaker notion relative consistency is interesting in set theory (and in other sufficiently expressive axiomatic systems). If T is a theory and A is an additional axiom, T + A is said to be consistent relative to T (or simply that A is consistent with T) if it can be proved that if T is consistent then T + A is consistent. If both A and ?A are consistent with T, then A is said to be independent of T.

First-order logic

[edit]

Notation

[edit]

In the following context of mathematical logic, the turnstile symbol means "provable from". That is, reads: b is provable from a (in some specified formal system).

Definition

[edit]
  • A set of formulas in first-order logic is consistent (written ) if there is no formula such that and . Otherwise is inconsistent (written ).
  • is said to be simply consistent if for no formula of , both and the negation of are theorems of .[clarification needed]
  • is said to be absolutely consistent or Post consistent if at least one formula in the language of is not a theorem of .
  • is said to be maximally consistent if is consistent and for every formula , implies .
  • is said to contain witnesses if for every formula of the form there exists a term such that , where denotes the substitution of each in by a ; see also First-order logic.[citation needed]

Basic results

[edit]
  1. The following are equivalent:
    1. For all
  2. Every satisfiable set of formulas is consistent, where a set of formulas is satisfiable if and only if there exists a model such that .
  3. For all and :
    1. if not , then ;
    2. if and , then ;
    3. if , then or .
  4. Let be a maximally consistent set of formulas and suppose it contains witnesses. For all and :
    1. if , then ,
    2. either or ,
    3. if and only if or ,
    4. if and , then ,
    5. if and only if there is a term such that .[citation needed]

Henkin's theorem

[edit]

Let be a set of symbols. Let be a maximally consistent set of -formulas containing witnesses.

Define an equivalence relation on the set of -terms by if , where denotes equality. Let denote the equivalence class of terms containing ; and let where is the set of terms based on the set of symbols .

Define the -structure over , also called the term-structure corresponding to , by:

  1. for each -ary relation symbol , define if [9]
  2. for each -ary function symbol , define
  3. for each constant symbol , define

Define a variable assignment by for each variable . Let be the term interpretation associated with .

Then for each -formula :

if and only if [citation needed]

Sketch of proof

[edit]

There are several things to verify. First, that is in fact an equivalence relation. Then, it needs to be verified that (1), (2), and (3) are well defined. This falls out of the fact that is an equivalence relation and also requires a proof that (1) and (2) are independent of the choice of class representatives. Finally, can be verified by induction on formulas.

Model theory

[edit]

In ZFC set theory with classical first-order logic,[10] an inconsistent theory is one such that there exists a closed sentence such that contains both and its negation . A consistent theory is one such that the following logically equivalent conditions hold

  1. [11]

See also

[edit]

Notes

[edit]
  1. ^ Tarski 1946 states it this way: "A deductive theory is called consistent or non-contradictory if no two asserted statements of this theory contradict each other, or in other words, if of any two contradictory sentences … at least one cannot be proved," (p. 135) where Tarski defines contradictory as follows: "With the help of the word not one forms the negation of any sentence; two sentences, of which the first is a negation of the second, are called contradictory sentences" (p. 20). This definition requires a notion of "proof". G?del 1931 defines the notion this way: "The class of provable formulas is defined to be the smallest class of formulas that contains the axioms and is closed under the relation "immediate consequence", i.e., formula c of a and b is defined as an immediate consequence in terms of modus ponens or substitution; cf G?del 1931, van Heijenoort 1967, p. 601. Tarski defines "proof" informally as "statements follow one another in a definite order according to certain principles … and accompanied by considerations intended to establish their validity [true conclusion] for all true premises – Reichenbach 1947, p. 68]" cf Tarski 1946, p. 3. Kleene 1952 defines the notion with respect to either an induction or as to paraphrase) a finite sequence of formulas such that each formula in the sequence is either an axiom or an "immediate consequence" of the preceding formulas; "A proof is said to be a proof of its last formula, and this formula is said to be (formally) provable or be a (formal) theorem" cf Kleene 1952, p. 83.
  2. ^ Carnielli, Walter; Coniglio, Marcelo Esteban (2016). Paraconsistent logic: consistency, contradiction and negation. Logic, Epistemology, and the Unity of Science. Vol. 40. Cham: Springer. doi:10.1007/978-3-319-33205-5. ISBN 978-3-319-33203-1. MR 3822731. Zbl 1355.03001.
  3. ^ Hodges, Wilfrid (1997). A Shorter Model Theory. New York: Cambridge University Press. p. 37. Let be a signature, a theory in and a sentence in . We say that is a consequence of , or that entails , in symbols , if every model of is a model of . (In particular if has no models then entails .)
    Warning: we don't require that if then there is a proof of from . In any case, with infinitary languages, it's not always clear what would constitute proof. Some writers use to mean that is deducible from in some particular formal proof calculus, and they write for our notion of entailment (a notation which clashes with our ). For first-order logic, the two kinds of entailment coincide by the completeness theorem for the proof calculus in question.
    We say that is valid, or is a logical theorem, in symbols , if is true in every -structure. We say that is consistent if is true in some -structure. Likewise, we say that a theory is consistent if it has a model.
    We say that two theories S and T in L infinity omega are equivalent if they have the same models, i.e. if Mod(S) = Mod(T).
    (Please note the definition of Mod(T) on p. 30 ...)
  4. ^ van Heijenoort 1967, p. 265 states that Bernays determined the independence of the axioms of Principia Mathematica, a result not published until 1926, but he says nothing about Bernays proving their consistency.
  5. ^ Post proves both consistency and completeness of the propositional calculus of PM, cf van Heijenoort's commentary and Post's 1931 Introduction to a general theory of elementary propositions in van Heijenoort 1967, pp. 264ff. Also Tarski 1946, pp. 134ff.
  6. ^ cf van Heijenoort's commentary and G?del's 1930 The completeness of the axioms of the functional calculus of logic in van Heijenoort 1967, pp. 582ff.
  7. ^ cf van Heijenoort's commentary and Herbrand's 1930 On the consistency of arithmetic in van Heijenoort 1967, pp. 618ff.
  8. ^ A consistency proof often assumes the consistency of another theory. In most cases, this other theory is Zermelo–Fraenkel set theory with or without the axiom of choice (this is equivalent since these two theories have been proved equiconsistent; that is, if one is consistent, the same is true for the other).
  9. ^ This definition is independent of the choice of due to the substitutivity properties of and the maximal consistency of .
  10. ^ the common case in many applications to other areas of mathematics as well as the ordinary mode of reasoning of informal mathematics in calculus and applications to physics, chemistry, engineering
  11. ^ according to De Morgan's laws

References

[edit]
[edit]
对等是什么意思 肺在五行中属什么 梦见不干净的东西代表什么 霍乱是什么病 斯德哥尔摩综合症是什么意思
河豚有毒为什么还吃 直的是什么意思 g是什么单位 肛瘘是什么原因造成的 苍蝇为什么喜欢往人身上飞
月经期间吃什么水果好 健康管理是做什么的 减肥最快的运动是什么运动 通五行属什么 莲藕什么时候种植最佳
电器发生火灾用什么灭火器 已所不欲勿施于人是什么意思 吃阿胶有什么好处 莫须有什么意思 士多啤梨是什么水果
隐忍是什么意思baiqunet.com 死不瞑目是什么意思hcv8jop1ns4r.cn 没字去掉三点水念什么hcv9jop0ns9r.cn 棚户区改造和拆迁有什么区别hcv7jop4ns5r.cn 结婚23年是什么婚hcv8jop6ns0r.cn
梦见什么是受孕成功了hcv8jop0ns5r.cn 处女座跟什么星座最配hcv9jop5ns6r.cn 天上的云像什么luyiluode.com 心肾两虚吃什么中成药clwhiglsz.com 什么手机电池最耐用hcv8jop6ns8r.cn
阿玛尼手表属于什么档次hcv9jop4ns2r.cn 内伤湿滞什么意思hcv8jop6ns3r.cn 通勤什么意思hcv9jop4ns3r.cn 宝宝胀气是什么原因引起的hcv8jop1ns7r.cn ab型血可以输什么血hcv8jop8ns0r.cn
左手中指戴戒指什么意思0297y7.com 为什么要打胰岛素hcv9jop1ns1r.cn 王加呈念什么hcv9jop7ns9r.cn 1969年什么时候退休hcv8jop1ns2r.cn 隔三差五是什么意思hcv9jop7ns4r.cn
百度