八0年属什么生肖| 明信片是什么| 牛磺酸是什么东西| 6月19日什么星座| 梦见自己在飞是什么征兆| 白细胞低是什么原因| 橘红是什么东西| 为什么会宫颈糜烂| 坚果都有什么| 全麦粉是什么面粉| 孕妇可以喝什么茶| 皮下脂肪瘤挂什么科| 转卖是什么意思| ins是什么软件| 18kgp是什么金| 备孕前需要做什么检查| 32周做什么检查| 十二指肠溃疡吃什么药| 孕吐是什么原因造成的| 低密度脂蛋白高有什么症状| 坚果什么时候吃最好| 俄罗斯乌拉是什么意思| 六九是什么意思| 人为什么会哭| 晚生是什么意思| 北漂是什么意思| 重丧是什么意思| 蹲久了站起来头晕是什么原因| 八年是什么婚| 喝酒前吃什么不会醉| 低头什么节| 阳气是什么| 吃党参有什么好处| 温水煮青蛙是什么意思| 脚后跟疼痛是什么原因| 小葫芦项链是什么牌子| 脚趾发紫是什么原因| 什么伤医院不能治| 情缘是什么意思| 面条是什么做的| 557是什么意思| 陈皮泡水喝有什么功效和作用| 子宫腺肌症是什么原因引起的| 胃痛胃胀吃什么药| 秦始皇是什么生肖| nlp是什么意思| 24度穿什么衣服合适| 玫瑰糠疹吃什么药最有效| 大便失禁是什么原因| 有眼不识泰山是什么意思| 眼睛干涩用什么药水| 梦见把头发剪短了是什么意思| 醋坛子是什么意思| 酒曲是什么| 阴道瘙痒用什么药最好| 什么是扬州瘦马| 菊花是什么季节| ad滴剂什么时候吃最好| 广东有什么好玩的地方| 望闻问切什么意思| 高血压能吃什么| 2017年属什么生肖| 拉肚子吃什么消炎药| 草木皆兵指什么生肖| 百田森的鞋什么档次| 艺考音乐考什么| 马克笔是什么笔| 什么情况下吃奥司他韦| pmid是什么意思| 梦见儿子拉屎是什么意思| 压缩性骨折是什么意思| 什么属相不能摆放大象| pap什么意思| 肚脐眼周围是什么器官| 阿q精神是什么意思| 心脏不好挂什么科室| 冲奶粉用什么水比较好| 肝小钙化灶是什么意思| adhd是什么意思| 诗眼是什么意思| 行长是什么级别| 牛跟什么相冲| 内痔疮有什么症状| 腿肿脚肿是什么病的前兆| 农历六月初四是什么日子| 小饭桌是什么意思| 牛肉和什么炒| 1月7日是什么星座| 血燥是什么意思| 蜂鸟是什么鸟| 做梦梦见僵尸是什么预兆| 膈应什么意思| 凉拖鞋什么材质的好| 蟑螂喜欢什么环境| 电子邮件地址是什么意思| 什么叫软文| 梅毒检查什么项目| 大舅哥是什么意思| 为什么会流口水| 手脚麻是什么原因| 天意是什么意思| 做书桌用什么板材好| 饕餮长什么样子| 梦见捉黄鳝是什么意思| 新生儿便秘吃什么好| 瞅瞅是什么意思| 舍什么救什么| 便秘用什么方法治| 扎西德勒是什么意思| hbeab阳性是什么意思| 气血不足什么原因引起的| 天天喝白酒对身体有什么危害| 枫叶什么颜色| 九曲红梅是什么茶| 吹弹可破的意思是什么| 有炎症吃什么药| 腋臭是什么原因引起的| 六六大顺是什么生肖| 易烊千玺的爸爸是干什么的| 深圳车牌摇号需要什么条件| 1992是什么年| supreme是什么牌子| 下肢水肿是什么原因| 怀孕第一个月有什么反应| 大舌头是什么意思| 洋溢着什么样的笑容| 二十不惑什么意思| 前列腺肥大吃什么药效果最好| 孕妇喝柠檬水对胎儿有什么好处| 吃什么能软化血管| 男人梦见蛇是什么预兆| 皮肤黑适合穿什么颜色的衣服| 妈妈姐姐的女儿叫什么| 大便带血丝是什么原因| 你是我的楼兰是什么意思| 花木兰属什么生肖| 脖子痒是什么原因| 天理是什么意思| 甲钴胺有什么作用| 甲亢是什么病| 空囊是什么原因造成的| 测智力去医院挂什么科| 头发为什么会变黄| 人活着到底有什么意义| 国粹是什么| 广州五行属什么| 蚝油可以用什么代替| 蛋白肉是什么东西做的| 什么是溃疡| 天然气主要成分是什么| 子宫附件是什么意思| 粒字五行属什么| 传度是什么意思| 麦粒肿用什么药| 6月1号是什么星座| 喝酒有什么危害| 美甲什么颜色显手白| 意外流产有什么症状| 网织红细胞高说明什么| 鸡头米是什么东西| 人为什么会中暑| 男性裆部瘙痒用什么药好| 五月十三日是什么星座| lcu是什么意思| 看山不是山看水不是水是什么意思| 还替身是什么意思| 傻瓜是什么生肖| 押韵是什么意思| wz是什么意思| 孩子肠胃炎吃什么药| 治飞蚊症用什么眼药水| 外耳道疖肿用什么药| 雪村和赵英俊什么关系| 1975年属兔是什么命| 阑尾炎可以吃什么水果| 脱氢酶高是什么原因| 什么鸡最好吃| 肠道肿瘤有什么症状| eod是什么意思| 什么是基数| 辣椒为什么会辣| 什么是像素| amber是什么意思| 海蜇是什么动物| 什么植物有毒| 肛门痛是什么原因| 器材是什么意思| 蛇最怕什么东西| 妈宝女是什么意思| 包臀裙配什么上衣| 心慌是什么意思| 符咒是什么意思| 柔软的近义词是什么| 肠化十是什么意思| 为什么会长水泡| 工作室是干什么的| 什么是ct| 2017年属什么| 胃不好能吃什么水果| 痛风不能吃什么食物表| 梦见自己的车丢了是什么意思| 金什么| 书字五行属什么的| prl是什么意思| 地西泮又叫什么| 怀孕吃核桃对宝宝有什么好处| 小处男是什么意思| 纸片人是什么意思| 手淫过度吃什么药调理| 婴儿长牙有什么症状| 早上起床牙龈出血是什么原因| 嘴唇有黑斑是什么病| 这个季节适合种什么菜| 胸腔里面像岔气了的疼是什么原因| courvoisier是什么酒| 前列腺在哪里男人的什么部位| 三月14号是什么星座| 属虎的本命佛是什么佛| 怨气是什么意思| 核磁共振主要检查什么| 男孩取什么名字好听又有贵气| 泡沫尿挂什么科| 耳鼻喉科主要看什么病| 拨备覆盖率是什么意思| 脱髓鞘是什么病| 幼字五行属什么| 抗体和抗原有什么区别| 黑头是什么| 血糖高吃什么水果好能降糖| 品红是什么颜色| 手凉是什么原因| 什么叫心肌桥| 杀马特是什么意思| n2o是什么气体| 70a是什么尺码| 属猪的五行属什么| 腋窝疼痛挂什么科| 受凉吃什么药| 自食其力是什么意思| 来加贝念什么| ltp什么意思| 大便很粗是什么原因| 中国的国果是什么| 处暑吃什么| 干预是什么意思| 抬旗是什么意思| 走路脚后跟疼是什么原因| 汗疱疹涂什么药| 肆意是什么意思| 验尿能检查出什么| 真丝姆米是什么意思| 1129什么星座| 什么样的人容易低血糖| 西铁城手表属于什么档次| 单抗是什么药| 医院验光挂什么科| 轻度贫血有什么症状| 肠胀气是什么原因| 扁桃体有什么作用| 莱赛尔纤维是什么面料| 伪军是什么意思| 吃什么对肠道好| 鹭鸶是什么动物| 戏梦巴黎讲的是什么| 百度Jump to content

淄博召开重点项目观摩点评会 建设现代化组群式

From Wikipedia, the free encyclopedia
The pattern of weak isospins, weak hypercharges, and color charges for particles in the Georgi–Glashow model. Here, a proton, consisting of two up quarks and a down, decays into a pion, consisting of an up and anti-up, and a positron, via an X boson with electric charge ??4/3?e.
百度 特朗普的打算这次特朗普怼全世界也是有这个打算:如果对外征收高额关税,必然引发对方报复性提高关税。

In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron.[1] The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.[2]

According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see Chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture—forms of radioactive decay in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom.

Some beyond-the-Standard-Model grand unified theories (GUTs) explicitly break the baryon number symmetry, allowing protons to decay via the Higgs particle, magnetic monopoles, or new X bosons with a half-life of 1031 to 1036 years. For comparison, the universe is roughly 1.38×1010 years old.[3] To date, all attempts to observe new phenomena predicted by GUTs (like proton decay or the existence of magnetic monopoles) have failed.

Quantum tunnelling may be one of the mechanisms of proton decay.[4][5][6]

Quantum gravity[7] (via virtual black holes and Hawking radiation) may also provide a venue of proton decay at magnitudes or lifetimes well beyond the GUT scale decay range above, as well as extra dimensions in supersymmetry.[8][9][10][11]

There are theoretical methods of baryon violation other than proton decay including interactions with changes of baryon and/or lepton number other than 1 (as required in proton decay). These included B and/or L violations of 2, 3, or other numbers, or B ? L violation. Such examples include neutron oscillations and the electroweak sphaleron anomaly at high energies and temperatures that can result between the collision of protons into antileptons[12] or vice versa (a key factor in leptogenesis and non-GUT baryogenesis).

Baryogenesis

[edit]
Unsolved problem in physics
Do protons decay? If so, then what is the half-life? Can nuclear binding energy affect this?

One of the outstanding problems in modern physics is the predominance of matter over antimatter in the universe. The universe, as a whole, seems to have a nonzero positive baryon number density – that is, there is more matter than antimatter. Since it is assumed in cosmology that the particles we see were created using the same physics we measure today, it would normally be expected that the overall baryon number should be zero, as matter and antimatter should have been created in equal amounts. This has led to a number of proposed mechanisms for symmetry breaking that favour the creation of normal matter (as opposed to antimatter) under certain conditions. This imbalance would have been exceptionally small, on the order of 1 in every 1010 particles a small fraction of a second after the Big Bang, but after most of the matter and antimatter annihilated, what was left over was all the baryonic matter in the current universe, along with a much greater number of bosons.

Most grand unified theories explicitly break the baryon number symmetry, which would account for this discrepancy, typically invoking reactions mediated by very massive X bosons (X) or massive Higgs bosons (H0
). The rate at which these events occur is governed largely by the mass of the intermediate X or H0
particles, so by assuming these reactions are responsible for the majority of the baryon number seen today, a maximum mass can be calculated above which the rate would be too slow to explain the presence of matter today. These estimates predict that a large volume of material will occasionally exhibit a spontaneous proton decay.

Experimental evidence

[edit]

Proton decay is one of the key predictions of the various grand unified theories (GUTs) proposed in the 1970s, another major one being the existence of magnetic monopoles. Both concepts have been the focus of major experimental physics efforts since the early 1980s. To date, all attempts to observe these events have failed; however, these experiments have been able to establish lower bounds on the half-life of the proton. Currently, the most precise results come from the Super-Kamiokande water Cherenkov radiation detector in Japan:[13] a lower bound on the proton's half-life of 2.4×1034 years via positron decay, and similarly, 1.6×1034 years via antimuon decay, close to a supersymmetry (SUSY) prediction of 1034–1036 years.[14] An upgraded version, Hyper-Kamiokande, probably will have sensitivity 5–10 times better than Super-Kamiokande.

Theoretical motivation

[edit]

Despite the lack of observational evidence for proton decay, some grand unification theories, such as the SU(5) Georgi–Glashow model and SO(10), along with their supersymmetric variants, require it. According to such theories, the proton has a half-life of about 1031~1036 years and decays into a positron and a neutral pion that itself immediately decays into two gamma ray photons:

Since a positron is an antilepton this decay preserves B ? L number, which is conserved in most GUTs.

Additional decay modes are available (e.g.: p+
μ+
+ π0
), both directly and when catalyzed via interaction with GUT-predicted magnetic monopoles.[15] Though this process has not been observed experimentally, it is within the realm of experimental testability for future planned very large-scale detectors on the megaton scale. Such detectors include the Hyper-Kamiokande.

Early grand unification theories (GUTs) such as the Georgi–Glashow model, which were the first consistent theories to suggest proton decay, postulated that the proton's half-life would be at least 1031 years. As further experiments and calculations were performed in the 1990s, it became clear that the proton half-life could not lie below 1032 years. Many books from that period refer to this figure for the possible decay time for baryonic matter. More recent findings have pushed the minimum proton half-life to at least 1034–1035 years, ruling out the simpler GUTs (including minimal SU(5) / Georgi–Glashow) and most non-SUSY models. The maximum upper limit on proton lifetime (if unstable), is calculated at 6×1039 years, a bound applicable to SUSY models,[16] with a maximum for (minimal) non-SUSY GUTs at 1.4×1036 years.[16](part 5.6)

Although the phenomenon is referred to as "proton decay", the effect would also be seen in neutrons bound inside atomic nuclei. Free neutrons—those not inside an atomic nucleus—are already known to decay into protons (and an electron and an antineutrino) in a process called beta decay. Free neutrons have a half-life of 10 minutes (610.2±0.8 s)[17] due to the weak interaction. Neutrons bound inside a nucleus have an immensely longer half-life – apparently as great as that of the proton.

Projected proton lifetimes

[edit]
Theory class Proton lifetime (years)[18] Ruled out experimentally?
Minimal SU(5) (Georgi–Glashow) 1030–1031 Yes
Minimal SUSY SU(5) 1028–1032 Yes
SUGRA SU(5) 1032–1034 Yes
SUSY SO(10) 1032–1035 Partially
SUSY SU(5) (MSSM) ~1034 Partially
SUSY SU(5) – 5 dimensions 1034–1035 Partially
SUSY SO(10) MSSM G(224) 2×1034 No
Minimal (Basic) SO(10) – Non-SUSY < ~1035 (maximum range) No
Flipped SU(5) (MSSM) 1035–1036 No

The lifetime of the proton in vanilla SU(5) can be naively estimated as .[19] Supersymmetric GUTs with reunification scales around μ ~ 2×1016 GeV/c2 yield a lifetime of around 1034 yr, roughly the current experimental lower bound.

Decay operators

[edit]

Dimension-6 proton decay operators

[edit]

The dimension-6 proton decay operators are and where is the cutoff scale for the Standard Model. All of these operators violate both baryon number (B) and lepton number (L) conservation but not the combination B ? L.

In GUT models, the exchange of an X or Y boson with the mass ΛGUT can lead to the last two operators suppressed by . The exchange of a triplet Higgs with mass M can lead to all of the operators suppressed by . See Doublet–triplet splitting problem.

Dimension-5 proton decay operators

[edit]

In supersymmetric extensions (such as the MSSM), we can also have dimension-5 operators involving two fermions and two sfermions caused by the exchange of a tripletino of mass M. The sfermions will then exchange a gaugino or Higgsino or gravitino leaving two fermions. The overall Feynman diagram has a loop (and other complications due to strong interaction physics). This decay rate is suppressed by where MSUSY is the mass scale of the superpartners.

Dimension-4 proton decay operators

[edit]

In the absence of matter parity, supersymmetric extensions of the Standard Model can give rise to the last operator suppressed by the inverse square of sdown quark mass. This is due to the dimension-4 operators q?d?c and ucdcd?c.

The proton decay rate is only suppressed by which is far too fast unless the couplings are very small.

See also

[edit]

References

[edit]
  1. ^ Ahmad, Ishfaq (1969), "Radioactive decays by Protons. Myth or reality?", The Nucleus, pp. 69–70
  2. ^ Bajc, Borut; Hisano, Junji; Kuwahara, Takumi; Omura, Yuji (2016). "Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5) GUTs". Nuclear Physics B. 910: 1. arXiv:1603.03568. Bibcode:2016NuPhB.910....1B. doi:10.1016/j.nuclphysb.2016.06.017. S2CID 119212168.
  3. ^ Francis, Matthew R. (22 September 2015). "Do protons decay?". symmetry magazine. Retrieved 2025-08-07.
  4. ^ Talou, P.; Carjan, N.; Strottman, D. (1998). "Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei". Physical Review C. 58 (6): 3280–3285. arXiv:nucl-th/9809006. Bibcode:1998PhRvC..58.3280T. doi:10.1103/PhysRevC.58.3280. S2CID 119075457.
  5. ^ Dicus, D. A.; Letaw, J. R.; Teplitz, D. C.; Teplitz, V. L. (January 1982). "Effects of proton decay on the cosmological future". The Astrophysical Journal. 252: 1. Bibcode:1982ApJ...252....1D. doi:10.1086/159528. ISSN 0004-637X.
  6. ^ Trixler, F. (2013). "Quantum Tunnelling to the Origin and Evolution of Life". Current Organic Chemistry. 17 (16): 1758–1770. doi:10.2174/13852728113179990083. PMC 3768233. PMID 24039543.
  7. ^ Bambi, Cosimo; Freese, Katherine (2008). "Dangerous implications of a minimum length in quantum gravity". Classical and Quantum Gravity. 25 (19): 195013. arXiv:0803.0749. Bibcode:2008CQGra..25s5013B. doi:10.1088/0264-9381/25/19/195013. hdl:2027.42/64158. S2CID 2040645.
  8. ^ Adams, Fred C.; Kane, Gordon L.; Mbonye, Manasse; Perry, Malcolm J. (2001). "Proton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS". International Journal of Modern Physics A. 16 (13): 2399–2410. arXiv:hep-ph/0009154. Bibcode:2001IJMPA..16.2399A. doi:10.1142/S0217751X0100369X. S2CID 14989175.
  9. ^ Al-Modlej, Abeer; Alsaleh, Salwa; Alshal, Hassan; Ali, Ahmed Farag (2019). "Proton decay and the quantum structure of space–time". Canadian Journal of Physics. 97 (12): 1317–1322. arXiv:1903.02940. Bibcode:2019CaJPh..97.1317A. doi:10.1139/cjp-2018-0423. hdl:1807/96892. S2CID 119507878.
  10. ^ Giddings, Steven B. (1995). "The black hole information paradox". arXiv:hep-th/9508151.
  11. ^ Alsaleh, Salwa; Al-Modlej, Abeer; Farag Ali, Ahmed (2017). "Virtual black holes from the generalized uncertainty principle and proton decay". Europhysics Letters. 118 (5): 50008. arXiv:1703.10038. Bibcode:2017EL....11850008A. doi:10.1209/0295-5075/118/50008. S2CID 119369813.
  12. ^ Tye, S.-H. Henry; Wong, Sam S. C. (2015). "Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes". Physical Review D. 92 (4): 045005. arXiv:1505.03690. Bibcode:2015PhRvD..92d5005T. doi:10.1103/PhysRevD.92.045005. S2CID 73528684.
  13. ^ Mine, Shunichi (2023). "Nucleon decay: theory and experimental overview". Zenodo. doi:10.5281/zenodo.10493165.
  14. ^ "Proton lifetime is longer than 1034 years". Kamioka Observatory. 25 November 2009. Archived from the original on 16 July 2011.
  15. ^ Sreekantan, B.V. (1984). "Searches for proton decay and superheavy magnetic monopoles" (PDF). Journal of Astrophysics and Astronomy. 5 (3): 251–271. Bibcode:1984JApA....5..251S. doi:10.1007/BF02714542. S2CID 53964771.
  16. ^ a b Nath, Pran; Fileviez Pérez, Pavel (2007). "Proton stability in grand unified theories, in strings and in branes". Physics Reports. 441 (5–6): 191–317. arXiv:hep-ph/0601023. Bibcode:2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. S2CID 119542637.
  17. ^ Olive, K. A.; et al. (Particle Data Group) (2014). "Review of Particle Physics – N Baryons" (PDF). Chinese Physics C. 38 (9): 090001. arXiv:astro-ph/0601168. Bibcode:2014ChPhC..38i0001O. doi:10.1088/1674-1137/38/9/090001. S2CID 118395784.
  18. ^ Bueno, Antonio; Melgarejo, Antonio J; Navas, Sergio; Dai, Zuxiang; Ge, Yuanyuan; Laffranchi, Marco; Meregaglia, Anselmo; Rubbia, André (2025-08-07). "Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds". Journal of High Energy Physics. 2007 (4): 041. arXiv:hep-ph/0701101. Bibcode:2007JHEP...04..041B. doi:10.1088/1126-6708/2007/04/041. ISSN 1029-8479. S2CID 119426496.
  19. ^ Chanowitz, Michael S.; Ellis, John; Gaillard, Mary K. (3 October 1977). "The price of natural flavour conservation in neutral weak interactions". Nuclear Physics B. 128 (3): 506–536. Bibcode:1977NuPhB.128..506C. doi:10.1016/0550-3213(77)90057-8. ISSN 0550-3213. S2CID 121007369.

Further reading

[edit]
[edit]
轻度溶血是什么意思 12年属什么生肖 为什么会长水痘 空窗期是什么 地中海贫血携带者是什么意思
胎停有什么症状 hpv病毒是什么病 法会是什么意思 农历五月二十是什么星座 女人左下眼皮跳是什么预兆
吃无花果有什么好处和坏处 中队长是什么级别 吃多种维生素有什么好处和坏处 全身发麻是什么原因 桃子不能和什么一起吃
反酸烧心吃什么药效果好 哀大莫过于心死是什么意思 过期药品是什么垃圾 上皮细胞一个加号什么意思 resp是什么意思
例假少吃什么能让量多travellingsim.com 功夫2什么时候上映hcv8jop9ns1r.cn 宝宝积食吃什么药chuanglingweilai.com 小孩子注意力不集中是什么原因hcv8jop5ns2r.cn 挂号信什么意思hcv9jop4ns6r.cn
四维彩超什么时候做hcv7jop6ns3r.cn 玛尼石是什么意思hcv9jop8ns3r.cn 去脂体重什么意思1949doufunao.com 糖尿病人吃什么水果sscsqa.com 梦见打雷是什么意思hcv8jop8ns8r.cn
鼻子两侧挤出来的白色东西是什么hcv9jop0ns4r.cn 但微颔之的之是什么意思hcv8jop3ns6r.cn 闻香识女人是什么意思hcv9jop4ns8r.cn 小狗可以吃什么水果hcv8jop2ns8r.cn 浅表性胃炎吃什么药好使hcv9jop5ns9r.cn
嗜酸性粒细胞偏高是什么意思hcv8jop0ns4r.cn 6541是什么药hcv8jop8ns1r.cn 水泡用什么药膏最有效hcv7jop7ns4r.cn 陶土色大便是什么颜色hcv8jop9ns4r.cn 耳毛念什么hcv8jop8ns0r.cn
百度